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1 Outline
Augmented Lagrangian Method (ALM) has gained great popularity in the recent decades in solving con-
strained optimization problems. The ALM is flexible in problem formulation, and has nice convergence
properties as well. However, the nature of the ALM makes it hard to implement distributed computing. To
overcome this disadvantage of the ALM, S. Boyd et al. [2] proposed the Alternating Direction Method of
Multipliers (ADMM) as an alternative of the ALM. In this report, we are interested in comparing the Aug-
mented Lagrangian Method and the Alternating Direction Method of Multipliers in solving the Thomson
Problem.
In the ALM algorithm, the ρ-schedule is one of the important issues. Many nice heuristics has been proposed
[4]. Interestingly, most papers that apply the ADMM algorithms including [2] seem to overlook the ρ-
schedule of the ADMM. We propose a tentative ρ-schedule algorithm. The results seems to be slightly
better than the one with ρ-fixed but no significant difference is observed.
We find that the ALM algorithm seems to work significantly better than the ADMM algorithm. We consider
the reasons probably are: 1. The Thomson problem strongly correlates the individual terms in the objective
function. By solving these terms separatively, the ADMM ignores the interactions between the terms and re-
sults in poor performance. 2. The Thomson problem is non-convex, and there seems to be little convergence
guarantee for the ADMM on nonconvex optimization. 3. Better ρ-schedule scheme could be applied.
We also implemented the spherical graph embedding problem. But for the integrity of the report, we will
mainly discuss the the Thomson problem.
The structure of the remaining report is as follows. Section 2 provides a basic gradient check of the Thomson
problem as well as the spherical graph embedding problem. Section 3 mainly describes the ALM algorithm
as well its ρ-schedule. Section 4 discusses the ADMM algorithms and provides a tentative ρ-schedule
for the ADMM. The experiments are in Section 5. And a short conclusion is included in Section 6. All
the implemented code, CMake file, as well as the scripts which produce all the experiment results can be
downloadable through the following links:

• http://www.cs.purdue.edu/homes/ding10/thompson.tar.bz2.

• http://web.ics.purdue.edu/~yuanl/download/CS590OPT/thompson.tar.bz2.

2 Calculating and Checking Gradient
We first calculate the gradient and Jacobian of the objective function and constraint functions. And then we
check the gradient for f (x) and the augmented Lagrangian function Lρ (x,y) w.r.t x.

∇Lρ,y (x) = ∇ f (x)−∇c(x)T · (y−ρ c(x)) (1)

2.1 Thomson problem

For the Thomson problem, we have: x1 . . .xn ∈ Rd ,x ,
(
xT

1 . . .x
T
n
)T . c(x), (c1 (x) . . .cn (x))T .

minimizex1...xn f (x) = ∑i 6= j
1

‖xi−x j ‖22
1≤ i, j ≤ n

subject to ci (x), ‖xi ‖2
2−1 = 0, ∀i = 1 . . .n

(2)

The gradient of f (x) and Jacobian of c(x) are:

1

http://www.cs.purdue.edu/homes/ding10/thompson.tar.bz2
http://web.ics.purdue.edu/~yuanl/download/CS590OPT/thompson.tar.bz2


∂ f (x)
∂ xi

= ∑
j 6=i

2(x j−xi)

‖x j−xi ‖4
2

(3)

∂ci (x)
∂ xi

= 2xi (4)

∂ci (x)
∂ x j

= 0 for j 6= i (5)

2.2 Spherical graph embedding problem
For the spherical graph embedding problem, we have: x1 . . .xn ∈Rd ,XXX , (x1 . . .xn)

T . c(XXX), (c1 (XXX) . . .cn (XXX))T .
LLL is a Laplacian matrix of the adjacency matrix of a graph G.

minimizeXXX f (XXX) = trace
(
XXXT LLLXXX

)
subject to ci (x), ‖xi ‖2

2−1 = 0, ∀i = 1 . . .n
(6)

In addition, we might also want c̃(XXX), XXXT en×1 = 0.
The gradient of f (XXX) and Jacobian of c(XXX) , c̃(XXX) are:

∂ f (XXX)

∂ xi
= ∑

j 6=i
LLLi, j x j +2LLLi,i xi (7)

∂ci (x)
∂ xi

= 2xi i = 1 . . .n (8)

∂ci (x)
∂ x j

= 0 i, j = 1 . . .n, i 6= j (9)

∂ c̃k (x)
∂ xi

= ek for i = 1 . . .n,k = 1 . . .d (10)

where ek is a d-dimensional vector that has 1 on the kth dimension and 0 otherwise.
In order to check the gradient ∇ f and ∇L, we coded the above functions in MATLAB. We used the
gradientcheck function in the Poblano toolbox. Please see checkgradients.m for the code. We
checked the gradient with randomly initialized points on a 3d sphere. For the graph problem, we used a
social network of 1200+ nodes from the AddHealth dataset [1], and then use snowball sampling to sample
a sub-graph of the desired size to generate the Laplacian matrix LLL.
The result for checking the gradients are plotted in Figure 1. It can be noted that for the Thomson problem,
the finite difference method cannot yield a desirable gradient checking result when the number of particles
is greater than 8. This indicates that the objective function becomes not very smooth as the number of points
goes up. This observation also coincides with the difficulty we faced when tuning the parameter ρk.
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Figure 1: Left: Thomson problem, d = 3; Right: Spherical graph embedding problem, d = 3
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3 Introduction to Methods of Multipliers
Through out this project, we try to address the constraint optimization problem

minimizex f (x)
subject to c(x) = 0 (11)

where f is continuously differentiable. We also assume there are m equality constraints, and use y1 . . .ym as
their Lagrangian multipliers.

3.1 Lagrangian Method
Lagrangian methods work by alternating between minimizing the primal given dual and maximizing the dual
given primal. The convergence in both dual and primal space require very strong assumptions[2]. However,
it allows for decomposition of the primal variables, which may potentially lead to parallel optimization
algorithms.
By introducing the Lagrangian multiplier y, we can write the Lagrangian function as

L(x,y) = f (x)−yT c(x) . (12)

The normal Lagrangian method solves the constrained minimization problem by

max
y

min
x

L(x,y) (13)

which yields the following two step update,

• xk+1 = argminx L(x,yk)

• yk+1
i = yk

i −αk c(x)

3.2 Augmented Lagrangian Method
In order to make the algorithm have better behaviors and easier to converge, one add penalized constraint
terms to form the augmented Lagrangian. This term, however, will make the optimization non-decomposable.

Lρ(x,y) = f (x)−yT c(x)+
ρ

2
‖c(x)‖2. (14)

Similar to Lagrangian methods, we obtain

max
y

min
x

Lρk(x,y) (15)

which yields the following two step update,

xk+1 = argmin
x

Lρk(x,y
k) (16)

yk+1
i = yk

i −ρk c
(

xk
)

(17)

An important observation is that in order for the ALM to work well, the schedule of the penalizing factor ρk
is very important. We follow [3, Algorithm 17.4] as our framework for implementing the ALM, and borrow
expertise from [4, Algorithm 1]. See Algorithm 1.

3.2.1 Implementation

We used the libLBFGS package as our subroutine for solving (16). The parameters we used for the ALM
method are: ρ0 = 10, α = 0.5, ω∗ = 10−8, η∗ = 10−8, ε∗ = 10−16. We then tune the parameters τ , β and
compare the experiment results. It turns out that a smaller β helps in obtaining better dual feasibility (better
fit for the objective function). However, the parameter τ is important for obtaining a good schedule for ρk.
On one hand, ρk has to grow larger to satisfy the primal feasibility. On the other hand, a large ρk will result
in a line search error which will be described in detail in the following section. In Algorithm 1, we used
the L2 norm for convergence test, to be consistent with the libLBFGS. However, in reality, for the Thomson
problem, lots of times the ALM will stop due to that ε∗ is satisfied instead of ω∗.
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Algorithm 1 Augmented Lagrangian Method
INPUT: Choose initial point x0, initial multipliers y0. Choose convergence parameter η∗,ω∗,ε∗, choose
ρ0 > 0, τ > 1, 0 < α < 1, β > 0.
INPUT: Objective function f (x), constraints c(x).
OUTPUT: A stationary point x that satisfies ∇Lρk(x,y)≈ 0.
η0 = 1/ρα

0 .
ω0 = 1/ρ0.
for k = 0,1,2, . . . do

Use LBFGS to find an approximate solution xk+1 to (16), that satisfies
‖∇Lρk ,y(x)‖2
‖xk‖2

≤max(ωk,ω∗).

if ‖c(xk+1)‖2 ≤max(ηk,η∗) then
if ‖c(xk+1)‖2 ≤ η∗ and ‖∇Lρk(x,y

k)‖2 ≤ ω∗ then
Stop with approximate solution xk+1.

end if
if ‖c(xk+1)‖2 ≤ η∗ and ‖ f (xk)− f (xk+1)‖2 ≤ ε∗ then

Stop with approximate solution xk+1.
end if
yk+1 = yk−ρk c(xk+1)
ρk+1 = ρk

ηk+1 = ηk/ρ
β

k+1
ωk+1 = ωk/τ .

else
yk+1 = yk

ρk+1 = τ ·ρk
ηk+1 = 1/ρα

k+1.
ωk+1 = 1/ρk+1.

end if
end for

3.2.2 ρ schedule for the ALM

There has been numerous literatures talking about the schedule of ρk for the ALM. Due to the lack of
accessibility to professional software packages such as LANCELOT and MINOS, we turn our attention to a
freely available software package TANGO and its relevant literature. Birgin and Martínez [5] introduced a
specific schedule for ρk that may increase or decrease ρk in various different situations. Moreover, the
subroutine for solving (16) is specialized and is guaranteed to achieve the specified tolerance level ωk. In
our case, the libLBFGS package which uses a More Thuente line search often stops due to a failure that the
uncertainty region of the curvature condition drops below the machine precision. Going back to Algorithm
1, we find that our ρk is always increasing. We tried the following scheme for fixing the line search error,
but couldn’t find a satisfying solution:

• We ported the C version the ALM code to MATLAB, and used different optimization procedures to
replace LBFGS. Using the conjugate gradient method, we found the same line search error in Poblano
toolbox. When using the fminunc function, it returned with the fact that ftol is satisfied.

• For Thomson problem, we used different values of τ to hand tune the result for 100 points. And found
out that when we increase τ carefully from 1.2 to 10, there are some certain value that makes ω∗
satisfied. However, we cannot find a clear relation ship between τ and the number of particles.

4 Alternating Direction Method of Multipliers
The main purpose of applying the Alternating Direction Method of Multipliers (ADMM) [2] is to make the
constrained optimization problems distributable by introducing some extra variables. For the purpose of
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solving the problems in this project, we are particularly interested in the following Consensus problem:

min ∑
j

f j(x j) (18)

s.t. x1 = . . .= x j = . . .= xn = z .

with the Lagrangian function,

L(x,z,y) = ∑
j

f j(x j)+∑
j

yT
j (x j−z) (19)

The primal feasibility of the problem is by taking gradient of L(x,z,y) with respect to y,

∇yL(x,z,y) = 0 =⇒ x j = z ∀ j (20)

The dual feasibility of the problem is by taking gradient of L(x,z,y) with respect to x and z,

∇x j L(x,z,y) = 0 =⇒ ∇x j f j(x j)+y j = 0 ∀ j (21)

∇zL(x,z,y) = 0 =⇒∑
j

y j = 0 (22)

Using the ALM with parameter ρ , we can formulate the above problem into,

Lρ(x,z,y) = ∑
j

f j(x j)+∑
j

yT
j (x j−z)+∑

j

ρ

2
‖x j−z‖2

2 (23)

Based on (23), we design the following three-step algorithm to optimize z, x and y iteratively,

• Update z (z-step):

– zk+1 = 1
n ∑ j

(
xk

j +
1
ρ

yk
j

)
• Update x (x-step):

– xk+1
j = argminx j

(
f j(x j)+

〈
yk

j,x j−zk+1
〉
+ ρ

2 ‖x j−zk+1 ‖2
2

)
• Update y (y-step):

– yk+1
j = yk

j +ρ(xk+1
j −zk+1).

One important property of the above algorithm is that after x-step, (xk+1,zk+1,yk) satisfy,

∇x j f j(xk+1
j )+yk

j +ρ(xk+1
j −zk+1) = 0

Because that yk+1
j = yk

j +ρ(xk+1
j −zk+1), we have,

∇x j f j(xk+1
j )+yk+1

j = 0

Therefore, (xk+1,zk+1,yk+1) always satisfy (21). However, (xk+1,zk+1,yk+1) may not satisfy (20) and (22)
unless the following tolk+1

1 and tolk+1
2 goes to zero,

tolk+1
1 , ∑

j
‖∇y j Lρ(xk+1,zk+1,yk+1)‖2

= ∑
j
‖xk+1

j −zk+1 ‖2

= ∑
j
‖yk+1

j −yk
j ‖2

tolk+1
2 , ‖∇zLρ(xk+1,zk+1,yk+1)‖2

= ‖ρ ∑
j

(
zk+1−xk+1

j

)
+∑

j
yk+1

j ‖2

= nρ‖zk+2−zk+1 ‖2

Obviously, if tolk+1
1 goes to 0, then yk+1 converges and xk+1

j → zk+1. If tolk+1
2 goes to 0, then zk+1 converges

and ∑ j yk+1
j → 0. Therefore, (20) and (22) satisfy.
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4.1 Parallelization Using Intel Threading Building Blocks
Inside each x-step (similar for z-step, as well as y-step), the variable pair xi that got updated is independent
of the other variables that got updated in the x-step. Therefore, inside each x-step (again similar for z-step,
as well as y-step), the updates can be parallelized.
There are a lot of ways to do parallel computing. In this project, we utilize the Intel Threading Building
Blocks (IntelTBB) 1 . The IntelTBB is a convenient multi-thread computational tool to do parallelization in
multi-core computers, which we consider are very commonly used now.
We mainly use the parallel_for to update the variables x. Meanwhile, in order to compute tol1 and tol2,
we use the parallel_reduce to update the variables y and z.
To use the IntelTBB, simply download it from its website, and set the environment variables by:

• source bin/tbbvars.sh [your computer architecture]

More details and user manuals are available online.

4.2 ρ Schedule for the ADMM
Unfortunately, in many literatures [2] that use the ADMM algorithm, people seem to overlook one important
issue in the ALM algorithm: the schedule of ρ . In most of the existing ADMM algorithms, ρ are always
fixed and the setting of the ρ are not emphasized. In our experiment, we find that the setting of ρ is very
important for the performance of the algorithm.
There are a couple of differences between the ADMM and the ALM algorithm in designing the ρ schedule.
In the ALM the dual feasibility is always satisfied, and therefore ρ is only adjusted based on the convergence
the primal feasibility. In addition, the update of x based on (16) is sometimes hard to be optimized within a
small tolerance. Some nice heuristics, e.g. [4], will apply.
On the other hand, in the ADMM, the update of x is very simple since they are decomposed into small
problems. The difficulty mainly comes from the fact that both primal and dual feasibility are not satisfied.
We propose the following scheme of ρ scheduling as a tentative extension of Algorithm 1. We will later
combine with the experiments to discuss why we think the following extension might be reasonable.

4.3 Thomson Problem
Based on the above discussion, we formulated the Thomson problem as

min
2

n(n−1) ∑
i6= j

1
‖xi j−x ji ‖2

2
+∑

i
δ (‖xii ‖2 = 1) (24)

s.t. xi1 = . . .= xii = . . .= xin = zi, ∀i.

with the Lagrangian function,

L(x,z,y) =
2

n(n−1) ∑
i 6= j

1
‖xi j−x ji ‖2

2
+∑

i
δ (‖xii ‖2 = 1)︸ ︷︷ ︸

f (x)

+∑
i

∑
j

yT
i j(xi j−zi) (25)

where n is the number of charged particles on the sphere.
The primal feasibility of the problem is by taking gradient of L(x,z,y) with respect to y,

xi j = zi ∀i, j (26)

The dual feasibility of the problem is by taking gradient of L(x,z,y) with respect to x and z,

∇xi j f (x)+yi j = 0 ∀i, j (27)

∑
j

yi j = 0 ∀i (28)

1http://threadingbuildingblocks.org/
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Algorithm 2 Alternating Direction Method of Multipliers
INPUT: Choose initial point x0, z0, y0. Choose convergence parameter η∗, choose ρ0 > 0, τ ≥ 1, 0 <
α < 1, β > 0 and η0 = 1.
INPUT: Objective function f (x), constraints c(x).
OUTPUT: A stationary point (x,z,y) that satisfies ∇Lρk(x,z,y)≈ 0.
for k = 0,1,2, . . . do

Use z-step to update z
Use x-step to update x
Use y-step to update y
if tol1 ≤ ηk and tol2 ≤ ηk then

if tol1 ≤ η∗ and tol2 ≤ η∗ then
Stop with approximate solution (xk+1,zk+1,yk+1).

end if
ρk+1 = ρk

ηk+1 = ηk/ρ
β

k+1
end if
if tol1 ≥ ηk and tol2 ≤ ηk then

ρk+1 = ρk · τ
ηk+1 = 1/ρα

k+1.
end if
if tol1 ≤ ηk and tol2 ≥ ηk then

ρk+1 = ρk/τ

ηk+1 = 1/ρα
k+1.

end if
if tol1 ≥ ηk and tol2 ≥ ηk then

ρk+1 = ρk
ηk+1 = 1/ρα

k+1.
end if

end for

Using the ALM with parameter ρ , we can formulate the above problem into,

Lρ(x,z,y) =
2

n(n−1) ∑
i6= j

1
‖xi j−x ji ‖2

2
+∑

i
δ (‖xii ‖2 = 1)+∑

i
∑

j
yT

i j(xi j−zi)+∑
i

∑
j

ρ

2
‖xi j−zi ‖2

2 (29)

Based on (29), we design the following three-step algorithm to optimize z, x and y iteratively,

• Update z (z-step):

– zk+1
i = 1

n ∑ j

(
xk

i j +
1
ρ

yk
i j

)
• Update x (x-step):

– Update xi j, for i 6= j:

xk+1
i j ,xk+1

ji = argmin
xi,x j

(
2

n(n−1)‖xi−x j ‖2
2
+
〈

yk
i j,xi−zk+1

i

〉
+

ρ

2
‖xi−zk+1

i ‖2
2 +
〈

yk
ji,x j−zk

j

〉
+

ρ

2
‖x j−zk

j ‖2
2

)
– Update xii:

xk+1
ii =argmin

xi

(
δ (‖xi ‖2 = 1)+

〈
yk

ii,xi−zk+1
i

〉
+

ρ

2
‖xi−zk+1

i ‖2
2

)
= ∏
‖·‖2=1

(zk+1
i − 1

ρ
yk

ii)

=(zk+1
i − 1

ρ
yk

ii)/‖zk+1
i − 1

ρ
yk

ii ‖2
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• Update y (y-step):

– yk+1
i j = yk

i j +ρ(xk+1
i j −zk+1

i ).

5 Experiments

5.1 Experiments on the ALM
In the first part of the experiments, we try to address the issue of:

• How the parameters β , α , τ affect the schedule of ρ in Algorithm 1.

• What’s the relationship between the augmented Lagrangian and the original objective function.

• How does the difficulty of the Thomson problem change as the number of particles goes up.

During the experiment, we find that α doesn’t affect the ALM much due to the rounding error in the line
search routine discussed in Section 3.2.2: the ωk cannot be always satisfied. Therefore, the subroutine
doesn’t exactly go as the algorithm expects. This is a major drawback of our implementation, which may
affect the convergence property of Algorithm 1. Therefore, we only vary β and τ for the experiment. We
selected different β ’s from {0.2,0.5,0.9,1.5,2.0}, and different τ’s from {1.5,5.0,10.0,20.0}. We solved
the Thomson problem for a scale of n = {2,4,8,16, . . .1024} particles in 3 dimension. For the convenience
of plotting, we re-scaled f (x) with a factor of 2

n(n−1) , and ‖c(x)‖2 with a factor of 1√
n . We have made the

following observations according to the results of our experiment:

• From ‖c(x)‖2 of Figure2, we can see that the larger β is, the more aggressive Algorithm 1 tries to
satisfy the constraints.

• From ‖c(x)‖2 of Figure4, we can see that the larger τ is, the more aggressive Algorithm 1 tries to
satisfy the constraints.

• From ‖∇L(x)‖2 of Figure5, we can see that as the number of particles grow larger, it becomes harder
to satisfy the dual feasibility.

• However, we cannot see obvious relationship between the gradient of g(x) and ∇L(x), different pa-
rameters tend to get the same solution, but not being able to satisfy g(x) ≈ 0 very well. We tend to
think this is the major issue of Algorithm 1 due to the line search issue.
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Figure 2: Left: objective value, Right: constraint, for different β ’s, when τ = 5.0.

5.2 Experiments on the ADMM
In the second part of the experiment, we will apply the ADMM algorithm on the Thomson problem. Our
experiments are designed to answer the following questions:

• How does the ρ setting affect the performance?

• Does ρ schedule improve the performance?
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• What is the speedup using multi-core machines?

• Is the ADMM faster than the ALM because of parallelization in the Thomson problem?

5.2.1 How does the ρ setting affect the performance?

To answer the first question, we turn off the ρ-schedule by setting τ to be equal to 1.0. We plot f (x), ‖c(x)‖2
as well as tol1 and tol2 using different values of ρ from 0.1 to 1000. We test the Thomson problem of
{2,4,8, . . . ,512,1024} particles. The algorithm stops if either it converges with η = 1e−6 or a maximum
of 5000 iterations are run. All the experiments are done on the Rossmann Cluster. We report the results in
Figure 6.
First of all, we see that ρ which is smaller than 1, e.g. 0.1, seems to work badly. It cannot find a good
objective value and cannot satisfy the constraint. Secondly, large ρ’s can always satisfy the constraint, but
they brings poor objective values. Thirdly, as ρ gets larger, tol1 usually goes lower, but tol2 gets higher.
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Figure 6: f (x),‖c(x)‖2, tol1, tol2, using different ρ’s.

5.2.2 Does ρ schedule improve the performance?

Based on the results by differentρ setting, it seems to be reasonable to schedule the ρ variables as following

• if tolk
1 > ηk and tolk

2 < ηk, we should increase ρ;

• if tolk
1 < ηk and tolk

2 > ηk, we should decrease ρ;

• otherwise, we just keep ρ fixed.

Our algorithm is designed using the above ρ-scheduling. We initialize ρ = 10, and test the ρ-scheduling
using different parameters τ ∈ {1.00,1.01,1.1,2,10} and α ∈ {0.1,0.5,0.9} and β ∈ {0.01,0.1,1,2}. We
test the Thomson problem of {2,4,8, . . . ,512,1024} particles. The algorithm stops if either it converges
with η = 1e− 6 or a maximum of 5000 iterations are run. All the experiments are done on the Rossmann
Cluster.
The sweep of these three parameters leads to a total number of 5×3×4 configurations. In order to show our
results, we first choose the lucky settings which minimize the averaged objective value of the problems of
{2,4,8, . . . ,512,1024} particles. The lucky setting turns out to be τ = 1.1, α = 0.5 and β = 2. We then plot
the curves of different τ , α and β respectively with the other two parameter fixed to be the lucky settings.
We report the results in Figure 7, Figure 8 and Figure 9.
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Firstly, we find that τ cannot be set to be very large for the ADMM. The reason is that the ADMM usually
require a lot of steps to converge, and large τ may make the ρ grows/decreases too quickly in the early stage
of the algorithm. Secondly, it appears that large α or small β also leads to poor performances. If β is too
slow, then the ηk decrease too slowly and the ρ-scheduling is inactive in the most of time. If α is too large,
then ηk might be too small which makes ρ change too rapidly. But overall, it seems that the ρ-schedule does
not seem to lead to significant difference of the performance.
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Figure 7: f (x),‖c(x)‖2, tol1, tol2, using different τ’s.

5.2.3 What is the speedup using multi-core machines?

To see the parallelization performance of the algorithm, we test the code on the problem with {64,128,256,512,1024}
particles. We run the code using 1-core, 2-core, 3-core, and 4-core using the Rossmann Cluster. It turns out
that the parallel speedup is close to be linear with the rate at about 0.75.

5.2.4 Is the ADMM better than the ALM because of parallelization in the Thomson problem?

In the Thomson problem, the answer is no. We take the 1024 particle problem as an example. Using the
lucky setting, for the ADMM with 4-core, it runs 5000 iterations in 1953 seconds, and reaches f (x) = 2.15
while ‖c(x)‖2 ' 1e− 6. In the ALM, it runs 24 iterations in 2806 seconds and reaches f (x) = 1.65 while
‖c(x)‖ ' 1e−8. The result of the ALM appears to be significantly better than that of the ADMM. We plot
the change of f (x) during CPUtime between the ALM and the ADMM.
In each iteration, the ADMM performs significantly faster than the ALM because each decomposed prob-
lem is very easy to solve. However, the ADMM algorithm appears to converge extremely slowly to high
accuracy. 2 In the Thomson problem, each pair (xi j,x ji) is strongly correlated to all the other pairs which
are dependent on either particle i or j. By decomposing the problem, the ADMM more or less ignores
the interactions between the particles. The ignorance results in the overall problem being poorly solved
by the ADMM, especially when the number of particles is large. Furthermore, the Thomson problem is
a nonconvex optimization problem. Although there is convergence guarantee (to a certain KKT point) for
the ALM algorithm, there seems to be little convergence guarantee for the ADMM algorithm on nonconvex
optimization problems. We designed a tentative ρ-schedule scheme but it does not show significant better
performance. Better ρ-schedule for the ADMM may as well improve its performance.

2Later we find a similar comment from Page 17 [2].
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Figure 8: f (x),‖c(x)‖2, tol1, tol2, using different α’s.
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Figure 9: f (x),‖c(x)‖2, tol1, tol2, using different β ’s.

1 1.5 2 2.5 3 3.5 4100

101

102

103

number of cores

C
PU

tim
e

(s
)

64 Pts
128 Pts
256 Pts
512 Pts

1024 Pts

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

number of cores

Sp
ee

du
p

64 Pts
128 Pts
256 Pts
512 Pts
1024 Pts

Figure 10: Left: CPU time, Right: Speedup, using different number of cores after 1000 iterations.

12



0 500 1,000 1,500 2,000 2,500 3,000
1.5

2

2.5

3

3.5

4

CPUtime (s)

f(
x)

ALM
ADMM

Figure 11: Comparison of the f (x) between the ALM and the ADMM on the 1024-particle Thomson prob-
lem.

5.3 Experiments on spherical graph embedding problem
We have programmed the ALM for solving the graph embedding problem, but to maintain the integrity of
this report, we only report briefly 1 sample result. We snowball-sampled the social network in [1] to 1024
nodes. It is an undirected unit weight graph. ALM converged with around 10 minutes with a result illustrated
in Figure 12.

Figure 12: Embedding a 1024 node graph onto a 3d sphere

6 Conclusion
We have investigated augmented Lagrangian methods (ALM) and alternating direction method of multipli-
ers (ADMM) for solving spherical constrained optimization problems. By implementing these methods by
ourselves, we significantly improved our understanding of these methods. ALM is well suited for large-
scale constraint optimization as evidenced by the successful deployment of the commercial softwares such
as LANCELOT and MINOS, while the schedule of ρk and special techniques in treating a sparse Jacobian of
c(x) is essential to the efficiency of these commercial systems. Given that we could not find a perfect sched-
ule of ρk and our subroutine for the intermediate update is problematic, ALM still gives reasonable result
for the Thomson problem. ADMM enables a decomposable objective function for parallel optimization and
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yields shorter unit-iteration time. However, the ADMM appears to converge very slowly to high accuracy.
The reason may be three folds: one, the decomposed sub-problem ignores the inherent interaction between
particles on the sphere; two, there is no convergence guarantee for the ADMM on the nonconvex optimiza-
tion problems; three, there lacks investigation of the scheduling of ρ in the ADMM literature, which is
worthwhile to look into as a future research topic.
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