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Abstract

We propose a novel approach for density estimation with exponential families for
the case when the true density may not fall within the chosen family. Our approach
augments the sufficient statistics with features designed to accumulate probability
mass in the neighborhood of the observed points, resulting in a non-parametric
model similar to kernel density estimators. We show that under mild conditions,
the resulting model uses only the sufficient statistics if the density is within the
chosen exponential family, and asymptotically, it approximates densities outside
of the chosen exponential family.

1 Non-parametric Exponential Family

Suppose X is a vector of random variables with support X ⊆ Rm. A distribution for X be-
longs to the exponential family of distributions with sufficient statistics t : X → H ⊆ Rd,
if its probability density has a functional form:1 fE (x|λ) = 1

Z(λ)q (x) exp 〈λ, t (x)〉, where
Z (λ) =

∫
X q (x) exp 〈λ, t (x)〉dx < ∞ is a partition function, λ is a vector of canonical pa-

rameters, q : X → R is a base measure, and 〈·, ·〉 denotes the Euclidean inner product. Assuming q
is fixed, let EFt denote the set of all possible distributions of the form fE with the set of sufficient
statistics t.

Given samples x1:n ,
(
x1, . . . ,xn

) i.i.d∼ f where f : X → R is an unknown density with the same
support as q. Let f̂n : X → R be the empirical distribution for x1:n, f̂n

(
x|x1:n

)
= 1

n

∑n
i=1 δ

(
xi
)

where δ (x) is a Dirac delta function. Exponential families can be obtained as a solution to the
optimization problem of minimizing the relative entropy subject to matching the moment constraints
of the empirical and the estimated distributions.

However, if the true distribution does not fall within the chosen exponential family, f 6∈ EFt,
the estimated model may provide a poor approximation to the true density (e.g. putting most
probability mass on the mean when f is multi-modal). Kernel density estimators (KDEs), on
the other hand, ensure a small portion of probability mass around the observed data points xi
by a weighted combination of kernel functions: fKDE

n

(
x|x1:n

)
= 1

n

∑n
i=1KH

(
x;xi

)
, where

KH

(
x;xi

)
= |H|− 1

2 K
(
H−

1
2

(
x− xi

))
. K is a multivariate kernel function, a bounded prob-

ability density function on Rm. KH is a multivariate kernel function with a symmetric positive
definite bandwidth matrix H; in this paper, we assume H = h2Id (assuming x ∈ Rd). Typically,
kernel functions are probability density functions peaked around each data point xi preserving cer-
tain probability mass. For example, the uniform kernel is an indicator function Ixi (x) = 1 if and
only if

∥∥x− xi∥∥
2
< h

2 , and Ef [Ixi ] is the probability mass inside the h
2 -ball around xi. Thus,

1For notational convenience, we denote X = x by x.
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KDEs match the mass around each xi to that of f̂n, therefore are able to approximate any f as
n → ∞. Inspired by KDEs, our proposed non-parametric exponential family adds the kernel func-
tions KH

(
x;xi

)
, tia (x)

2 to the set of sufficient statistics t (x). We then approximately match

Ef
[
tia
]

with Ef̂n
[
tia
]
:
∣∣∣Ef̂n [tia]− Ef [tia]∣∣∣ < βi. In addition to the canonical parameters λ for

sufficient statistics, non-parametric exponential families have augmented parameters λa for the aug-
mented statistics ta (x) ,

[
t1a . . . t

n
a

]
.

The proposed density approximation (fNEn (x)) is a solution to

fNEn

(
x|x1:n

)
= argmin

fNE∈F
KL

(
fNE ‖ q

)
subj to

EfNE
n (x|x1:n) [t (x)] = Ef̂n(x|x1:n) [t (x)] ,∣∣EfNE

n

[
tia (x)

]
− Ef̂n

[
tia (x)

]∣∣∣ ≤ βi, i = 1, . . . , n.

(1)

fNEn falls within the generalized MaxEnt framework [1]:

f (x) =
1

Z (λ,λa)
q (x) exp [〈λ, t (x)〉+ 〈λa, ta (x)〉]

Z (λ,λa) =

∫
X
q (x) exp [〈λ, t (x)〉+ 〈λa, ta (x)〉] dx.

(2)

Let s (x) , (t (x) , ta (x)) and θ , (λ,λa) be a combined set of statistics and parameters, re-
spectively, for the augmented model. A specific set of parameter values for the distribution in (2)
satisfying the constraints in (1) can be found by maximizing the penalized log-likelihood

l (θ) =

〈
θ,

1

n

n∑
i=1

s
(
xi
)〉
− lnZ (θ)−

n∑
i=1

βi
∣∣λia∣∣ . (3)

1.1 Theoretical Properties

The proofs appear in [2].
Theorem 1.1. Suppose a vector of random variables X with support on X has a density f ∈ EFt
with features t : X → H ⊆ Rd and a vector of canonical parameters λ ∈ C ∈ Rd. Suppose
x1, . . . ,xn , x1:n is a sequence of i.i.d. random vectors drawn from f . Let fNEn

(
x|θ̂n,x1:n

)
∈

NEFs be the MLE solution of (1), θ̂n =
(
λ̃n, λ̃a,n

)
, with all βi = β > 0, i = 1, . . . , n. Assuming

1. X is compact, 2. t is continuous, 3. EFt is a family of uniformly equicontinuous functions
w.r.t x, 4. Kernel K has bounded variation and has a bandwidth parameter H such that the series∑∞
n=1 e

−γn|H| converges for every positive value of γ, then as n → ∞, λ̃ia,n
p→ 0,∀i = 1, . . . , n

and λ̃n
p→ λ.

Theorem 1.1 shows that if the true distribution falls within the exponential family, then as sample
size increases, the estimated density from the non-parametric exponential family will have vanishing
reliance on the augmented parameters.

Theorem 1.2. Given a probability density function f (x) : X → R, let fNEn

(
x|θ̂n,x1:n

)
∈

NEFs be a solution satisfying (1). If 1. f is uniformly continuous on X , 2. KH (x) is uniformly

continuous on X , 3. supx∈X KH (x) < ∞, 4. lim
‖x‖→∞

KH (x)
m∏
i=1

xi = 0, 5. lim
n→∞

|H| 12 = 0, 6.

lim
n→∞

n |H| 12 =∞, then fNEn

(
x|θ̂n,x1:n

)
p→ f (x) pointwise on X .

Theorem 1.2 indicates the weak consistency of the non-parametric exponential family density esti-
mator. Thus our proposed non-parametric approach can be used to approximate densities which are
not from exponential families.

2We omit H(h in univariate kernels) from tia for the simplicity of notation. It is a tuning parameter that may
be set globally for all i = 1, . . . , n.
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Algorithm 1 Non-Parametric Exponential Family Coordinate Descent
INPUT: Samples x1, . . . ,xn ∈ Rd, sufficient statistics t : X → H, augmented features tia :
H → R, i = 1, . . . , n, `1 regularization parameters β
OUTPUT: MLE θ =

(
λ1, . . . , λd, λ1a, . . . , λ

n
a

)
Initialize θ(0)

Compute the sufficient statistics Ef̂n(x|x1:n) [t (x)]
repeat

iteration k = k + 1, θ(k) = θ(k−1)

for i = 1, . . . , d do
g
(k)
i = Ef̂n

[
ti (x)

]
− EfNE

n (x|θ(k))
[
ti (x)

]
Perform line search along g(k)i to update λi,(k)

end for
for j = 1 . . . n do

Solve two equations for λja (denote the solutions λj,−a and λj,+a , respectively):
EfNE

n (x|θ(k))
[
tja (x)

]
= Ef̂n

[
tja (x)

]
− βj and EfNE

n (x|θ(k))
[
tja (x)

]
= Ef̂n

[
tja (x)

]
+ βj

set λj,(k)a = λj,−a if λj,−a > 0, set λj,(k)a = λj,+a if λj,+a < 0, and set λj,(k)a = 0 otherwise
end for

until convergence
return θ(k)

1.2 Estimating Parameters for Non-Parametric Exponential Families

Recently there have been a number of methods developed for optimization of convex non-smooth
functions, some of them specifically aimed at log-linear problems such as (3) [e.g., 3–5]. We em-
ployed a coordinate descent algorithm similar to the SUMMET algorithm of [1] (see Algorithm 1),
primarily, due to its simplicity. Other possible approaches can be employed as well and may end up
more efficient for this formulation.

The proposed algorithm iterates between optimizing canonical parameters λ (by setting
Ef̂n [t (x)] = EfNE

n (x|θ(k)) [t (x)]) and sequentially optimizing the augmented parameters λa so
that the Karush-Kuhn-Tucker conditions [e.g., 6] are satisfied:

Ef̂n
[
tia (x)

]
− EfNE

n (x|θ)
[
tia (x)

]
∈


{βi} λia > 0,

{−βi} λia < 0,

(−βi, βi) βia = 0.

Algorithm 1 belies the inherent difficulty of: (1) calculation of the partial derivative g(k)i , and (2)
an implicit search procedure to update λj,(k)a , both involve calculating intractable integrals. If the
support is low-dimensional and the mass is contained in a small volume, then the partition function
(and thus the gradient) can be computed by numerical integration (quadrature). Alternatively, a
common approach to MLE with an intractable partition functionZ (θ) is Markov Chain Monte Carlo
MLE [MCMC-MLE, 7]. For example, the time complexity at each iteration k is O(Sn2), where S
is the number of Monte-Carlo samples we choose to use. However, we believe developments in
optimization [e.g. 3, 5] will help us find an efficient solution.

2 Experimental Evaluation

We illustrate the behavior of the proposed non-parametric density estimator matching first and sec-
ond order moment constraints (NPGaussian, i.e. t(x) =

(
x, x2

)
) in the univariate setting. Normal

density (in EF , N (0, 1)), t-distribution (not in EF , df=6) and a mixture of two normals (not in
EF , 1

2N (−3, 1) + 1
2N (3, 1)) are used for simulating i.i.d samples. We vary the sample size from

10 to 1000 for training and compute the out-of-sample likelihood with an evaluation set of 100000
samples for testing. Adaptive Gauss-Lobatto quadrature is used for numerical integration. We com-
pared the performance of our non-parametric approach, the model from the true functional family,
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Figure 1: Estimating simple one dimensional densities. Results are averaged over 20 runs. The
x axis is in log scale. (a) Normal distribution (b) t distribution (c) Mixed normal distribution (d)
Number of non-zero λas. In Figure(a,b,c), NPG: NPGaussian with O(1/

√
n) schedule, NPG-lgN:

NPGaussian with O(1/ log(n)) schedule, CNPG: constrained NPGaussian with true global moment
statistics. In (d), NPG-t: number of non-zeros for estimating t distribution with NPG, NPG-n:
number of non-zeros for estimating normal distribution with NPG, NPG: number of non-zeros for
estimating mixed normal distribution with NPG, CNPG: number of non-zeros for estimating mixed
normal distribution with CNPG, NPG-lgN: number of non-zeros for estimating mixed normal dis-
tribution with NPG-lgN.

and another non-parametric approach (KDE). There are two sets of tuning parameters, bandwidth
h and the box constraint parameter β, assumed to be the same for all i = 1, . . . , n. β was set
according to a fixed schedule β(n) = O(1/

√
n). h (both for KDE and for our approach) was deter-

mined based on cross-validated log-likelihood.3 Gaussian kernel function is used for NPGaussian
and for KDE. When estimating normal density, the NPGaussian model (NPG) quickly converges to
the normal density with the augmented parameters vanishing as suggested by Theorem 1.1 (Figure
1(a,d)). We also consider the case when the true sufficient statistics are given to us (constrained
NPGaussian, CNPG). The CNPG model shows improvement over NPGaussian for small n. How-
ever, as the training sample size increases, both CNPG and NPGaussian show similar performance
as the moment constraints t(x) are more accurately approximated. NPGaussian gives comparable
performance with KDE when estimating densities /∈ EFt (Figure 1(b,c)). We also experimented
with O(1/ log(n)) regularization schedule (NPG-lgN) for βs when estimating the mixed normal
distribution. As n increase, NPG-lgN becomes sparser than NPGaussian (Fig. 1(d)) and gives a
worse performance than KDE (Figure 1(c)), which agrees with Theorem 1.2.
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