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Abstract

Exponential random graph models (ERGMs) are commonly used for modeling
network data. However, they often suffer from degeneracy manifested in having
the learned model place very little mass on or near the observed network(s). We
propose a mass preserving ERGM, which, in addition to matching the mean statis-
tics for the features used with ERGMs, also ensures the resulting model places at
least a predetermined amount of mass on graphs similar to the observed graphs.
The resulting model is thus directly resistant to the degeneracy of assigning near
zero probability to the observations. This claim is further confirmed by our exper-
iments on several social networks from small to moderate in size (16 to 1000+
nodes).

1 Modeling Graphs with Mass Preserving ERGMs

An ERGM (or p? model) is an exponential family model over a space Gn of n-node graphs1 which
uses graph statistics as its features (sufficient statistics). The model is very popular in the social
network literature [ERGMs, e.g., 1–3] due to the inherited virtues of the exponential family and
the ability to match the graph statistics. The features of the model are typically motivated by the
properties of the networks that are of interest to domain scientists (e.g., sociologists); some examples
of such features are the number of edges, te (G) =

∑∑
1≤i<j≤n eij , and triangles t4 (G) =∑∑∑

1≤i<j<k≤n eijeikejk, where for G ∈ Gn, eij = 1 if there is an edge between nodes i and
j, and 0 otherwise. The probability mass function for a graph G ∈ Gn is defined as

P (G|λ) = 1

Z (λ)
exp 〈λ, t (G)〉 , Z (λ) =

∑
G∈Gn

exp 〈λ, t (G)〉 . (1)

A standard setup for the problem is to estimate a set of parameters λ for observed networks
G1, . . . , Gm ∈ Gn which is commonly done by maximizing the likelihood of the data (MLE).

However, the combination of having few training instances (a common setting is m = 1, i.e., only
one training example, which we denote as G?) and a very large sample space (|Gn| = 2(

n
2)) leads

to issues with parameter estimation often referred to as degeneracy of the estimated model. The
first type of degeneracy has been traced to the proximity of the feature vector t (G?) to the rela-
tive boundary of the convex hull ofH = {t (G) : G ∈ Gn}, the set of all possible feature values for
graphs under consideration [2, 4]. When t (G?) ∈ rint (conv (H)), MLE exists and is unique. How-
ever, the estimated model may place little probability mass in the vicinity of the only observationG?

(c.f. Figure 1), with a large portion of the mass placed on unrealistic graphs (e.g., empty or complete
graphs). There have been several approaches to fixing the latter (second type of) degeneracy which
can be summarized in two categories: 1) modifying the geometry [5–7], and 2) limiting exploration
in the canonical parameter space [8, 9]. Our proposed approach is also aimed at alleviating this latter
type of degeneracy.

1In this paper, we consider undirected graphs. An extension to directed graphs is straightforward.
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(b) Probability mass for ERGM
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(c) Probability mass for MPERGM

Figure 1: Illustration of degenerate ERGM and non-degenerate MPERGM for G8. The models
are trained based on the observation te(G?) = 22, t4(G

?) = 29. The orange × is the observed
statistics, and the red + is the mode of the learned model. The color bar on the right from red to
blue represents the probability mass changing from high to low.

1.1 Mass Preserving ERGMs

We propose to modify ERGMs by introducing additional mass-preservation constraints, ensuring
that a portion of probability mass is concentrated around the observations. Recall that an exponential
family model can be viewed as a solution to maximizing the entropy of a distribution while matching
the moments for the features:

P (G) = argmax
P ′

HP ′ [G] subject to EP ′ [t (G)] =
1

m

m∑
i=1

t (Gi) . (2)

The components of the parameter vector λ correspond to the constraints for individual features
in (2). One possible approach to guarantee that graphs generated by the model are similar to the
observed is to add constraints to concentrate the mass on the graphs with feature values close to
those of the observed. We accomplish this by adding the constraints on the mass in the neighborhood
of each observation. An intuitive way to introduce such constraint is using the indicator functions
IGi

(G) = 1 if and only if ‖t (G)− t (Gi)‖2 < h
2 for a predefined bandwidth h > 0. Then

EP [IGi
] is the mass inside the ball in the space of feature values centered at t (Gi) according to

P . One can replace the indicator function IGi with a kernel function tia (G) = KH (t (G) ; t (Gi))
(with bandwidth parameter H) to obtain a weighted mass indicator function. Adding constraints

mini ≤ EP ′
[
tia (G)

]
≤ maxi (3)

to (2) ensures that weighted mass over graphs with features similar to Gi is at least mini and at
most maxi. The solution to (2) with additional constraints in (3) (provided it exists) is also within
the exponential family [10],

P (G) =
1

Z (λ,λa)
exp [〈λ, t (G)〉+ 〈λa, ta (G)〉] (4)

with (λ,λa) found by maximizing the concave objective function

l (λ,λa) =
1

m

m∑
i=1

〈(λ,λa) , (t (Gi) , ta (Gi))〉 − lnZ (λ,λa)−
m∑
i=1

βi |λai |

where each βi is determined based on mini and maxi. Details can be found in [11]. We refer to the
model in Equation 4 as mass preserving ERGM (MPERGM).

There are several challenges with parameter estimation, most encountered before in ERGM fitting
[e.g., 6]: in particular, the gradient cannot be computed in closed form except for graphs of small
size (Gn for n ≤ 11). We therefore apply the MCMC-MLE approach of Hunter and Handcock
[12], computing EP [t (G)] as a sampled average 1

S

∑S
j=1

(
t
(
Gj
))

where G1:S i.i.d∼ f (G|λ,λa).
There are, however, two complications with this approach. One, graph sampling from ERGMs is
performed using Gibbs sampling and is computationally expensive. Therefore, graphs G1:S are
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re-sampled only once in several iterations, and reused for other iterations with weights equal to
the posterior probabilities. Two, the resulting distribution over graphs can be multi-modal, and
according to Jin and Liang [9], Hunter and Handcock [12], the sampler can get stuck around the
closest mode leading to an incorrect estimate of the gradient. Thus instead of performing line search,
we use the direction of the gradient with a predefined step-size.

2 Experimental Evaluation

We evaluate the fit of the estimated models by comparing local statistics of the observed graph to
that of the samples generated from the estimated distribution.2

Table 1: Social network data sets [11]. g8: The 8-node graph as in Figure 1(a); Do: The dolphins
data set; Kp: The Kapferer data set; Fl: The Florentine Business data set; Fa: The Faux.Mesa.High
data set; Ja: The Jazz data set; Ad: The AddHealth data set; Fb: The Facebook data set; Em: The
Email data set.

g8 Do Kp Fl Fa Ja Ad Fb Em
|V | 8 62 39 16 206 198 803 1024 1133

te(G
?) 22 159 158 15 203 2742 1985 1012 5451

t4(G
?) 29 95 201 5 62 17899 649 116 5343

No. unique sampled graph 99 100 100 100 100 100 100 96 100
No. unique features 33 33 30 27 14 70 72 74 70

No. max graph-edit distance 22 306 263 39 341 1435 999 385 1275
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Figure 2: Goodness of fit for small graphs. Gaussian kernel functions are used for MPERGM.
ERGM is shown in blue dashed lines, and MPERGM is shown in red dashed lines. Black lines are
the statistics for G?, being closer to black line means better fit.

We make use of three sets of local statistics commonly used as goodness-of-fit measures for ERGMs
[6]: the degree distribution (the proportion of nodes with exactly k neighbors), edgewise shared

2See [6] for a discussion on the evaluation of fit for social networks.
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partner distribution (the proportion of edges joining nodes with exactly k neighbors in common),
and the minimum geodesic distance (the proportion of connected node-pairs which have a minimum
distance of k).

We consider the number of edges and triangles as sufficient statistics, t (G) = (te (G) , t4 (G)).
First, we consider the toy domain of graphs with 8 nodes, G8. We enumerate all possible K =
12346 non-isomorphic graphs and resulting feature tuples, and compute probability mass entries
π1, . . . , πK . We trained our MPERGM with a Gaussian kernel function with h = 8 and β = 0.2.
Figure 1 shows that the MPERGM puts larger probability mass around G?.

We also estimated MPERGMs for several social network data sets, ranging in the number of nodes
from 16 to 1024, and with varying density of edges. Since |Gn| is too large to enumerate, the graphs
are drawn using a Gibbs sampler, and the parameters for the MPERGMs (and ERGMs, using the
R package ergm [6]) are estimated using MCMC-MLE. For each estimated model, the statistics
in Figure 2 (see [11] for large networks) were generated from 100 sampled graphs obtained by
running Gibbs with 1000 iterations for burn-in and 100 iterations between samples. We initialized
our Markov chain with the example graph; however, we lack documentation on what initial state
is used by the R package ergm procedure. We used a set of hand-tuned step-sizes and h values
for different data sets, and re-scaled the edge and triangle features by factors of 1

te(G?) and 1
t4(G?) .

Empirically, we find h ≈ 8 and a predefined step-size 10 works well for small graphs. In Figure 2,
ERGM is degenerate for the Florentine and Dolphins dataset, because most sampled graphs
have 0-degree nodes (third row), while MPERGM is able to generate samples scoring a similar set
of graph statistics to G?. In order to investigate the variance of the learned MPERGM, we count the
number of samples that are different in structure (not counting isomorphism) or different in features
(number of edges and triangles), while recording the maximum graph-edit distance3 to the initial
state over all sampled graphs. The results in Table 1 suggests that our sampler explores Gn with a
considerable range.
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