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Abstract—Semantic place recognition problem has attracted
growing interests in autonomous robots to expand their applica-
tion domain. Due to the large in-class variance in semantic place
recognition, the recognition performance has been lackluster.
In this paper, we hypothesize that the large in-class variance
is due to the fact that connections between places cannot be
suitably assigned a label. We verified this hypothesis on the
COLD localization database. We then propose a robust method
that can effectively detect these connections (landmarks), thus
improving the accuracy of semantic place recognition systems.
The proposed method uses image sequences for landmark
detection instead of a single image, thus providing robust results
which can be used for topological mapping for mobile robots
under different lighting conditions.

Index Terms—Semantic Place Recognition, Bag-of-Words,
Visual Vocabulary, Dynamic Time Warping

I. INTRODUCTION

The semantic place recognition of an environment that a
robot is traveling will be helpful in autonomous navigation
and various human-robot interaction tasks. Efforts in seman-
tic place recognition or classification have emerged since
2005. The semantic place classification problem refers to
distinguishing differences between different environmental
locations (e.g. distinguishing a kitchen from an office). The
semantic place recognition problem refers to differentiating
different locations when they even may be of the same type
(e.g. distinguishing office A from office B). Researchers first
employed range sensors to solve the semantic classification
problem. The distance measurements from range sensors
provide a nature information about how cluttered the envi-
ronment is. These measurements form well distinguishable
features for different type of environments. Mozos et al. [1]
proposed using AdaBoost algorithm for classifying different
type of semantic environments (e.g. rooms, hallways, door-
ways, etc.) from range sensor readings. Various geometric
measurements calculated from laser range data are then used
as weak features for AdaBoost.

As robust feature extraction methods are developed in
computer vision [3], [4], vision-based localization methods
become a popular research topic and experiments with visual
sensors have been carried out to improve the recognition per-
formance [5], [6]. Our hypothesis (misclassification happens
mostly at connection between semantic places) is inspired by
research [7], [8] in the vision-based localization context. For
simplifying naming conventions, we define “landmarks” to
be an area on a 2D map where two semantic place units
join, which is similar to Ranganathan et al. [9]. From now
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Fig. 1. Landmarks represented with time series of visual words. A part
of the figure was adapted from Figure 1 of Nister and Stewenius [2]

on, we will use the term “landmark” to stand for connections
between two adjacent semantic places.

II. RELATED WORK

Semantic place recognition and topological mapping share
a close relationship because each semantic place is usually
a node in the graph of a topological map. And the se-
mantic recognition problem appears earlier in the context
of topological mapping. Tapus and Siegwart [10] used line
and corner features in omni-directional images to generate
signatures for each semantic location. Thus the topological
map is represented by a collection of signatures. With a



hierarchical SLAM system, Kouzoubov and Austin [11]
can locate the robot in a topological map. Friedman et
al. [12] used Voronoi random fields to extract the topological
structure of an indoor metric map. Ranganathan et al. [9]
proposed a topological mapping algorithm without metric
map. In these topological mapping literatures, a node in the
topological map is usually a room on the floor plan, which
is a semantic place unit.

Later on, researchers employed Nearest Neighborhood
(NN) classification method for vision-based localization. In
these NN classification systems, observations are made that
misclassification happens mostly at “landmark” positions.
Using visual cameras, Zivkovic et al. [7] employed SIFT
features within images to match against the database images
in order to locate a robot to a semantic location. The seman-
tic location is represented with a node in the topological
map built with graph-partitioning algorithms. They tested
their localization performance by taking one image from the
database, matching it against all other images in the database
and assigning the nearest neighbor’s class to the image. The
database is simply a collection of images from one run of
the robot at a specific time (i.e., no lighting variations). Thus
they were able to achieve 90% recognition rate. However,
they pointed out that the misclassification happens mostly
at the boundaries between different partitions of their map.
Knopp et al. [8] also made similar observations. They
suppressed confusing features from being used for image
classification to achieve higher classification rate. Valgren
and Lilienthal [13] investigated the impact of different light-
ing conditions on the SIFT and SURF descriptors for vision-
based localization systems. They pointed out that vision-
based localization systems cannot achieve good recognition
rate with training and testing sets across different lighting
conditions based on a single image.

In recent years, the appearance-based, loop-closure prob-
lem has gained significant improvement. In the FAB-MAP
system proposed by Cummins and Newman [14], they
employed a bag-of-words model for images and used the
k-means clustering to generate a visual vocabulary. The
vocabulary itself carries moderate information about the
location where an image was taken, but is pruned to vari-
ous conditions. They further employed a graphical model,
called Chow-Liu tree, to capture the correlation between
those visual words. The resulting learned graphical model
significantly helped in the perceptual-aliasing problem.

This paper proposes a new framework under which novel
methods can be developed to effectively detect “landmarks”
to improve the performance of semantic place recognition
(c.f . Fig. 1) over alternative methods in [5], [6]. The
proposed approach is inspired by [7], [8], [14], but uses
a different method for generating vocabulary [2]. The pro-
posed method is based on forming a time-series sample of
Bag-of-Landmarks from a sequence of images. We call our
method as BoLTS for Bag-of-Landmarks using time series.
We generate the visual “landmarks” for a small number
of images (10-80) within an image sequence where “land-
marks” are identified by a human. Given image sequences

collected by the robot, a human picks up segments of images
where there is a “landmark”. By using the visual vocabulary
built with [15], a simplified version of [2], we obtained a
high recognition rate for “landmarks”. And by removing
these “landmarks” from the training set for the semantic
place recognition task, we improved the recognition rate,
thus validating our hypothesis that misclassifications happen
mostly at “landmark” positions. BoLTS advances the state-
of-art of visual landmark recognition, by broadening the
data-format into time-series with image sequences.

III. ROBUST SEMANTIC PLACE RECOGNITION

Our robust semantic place recognition approach consists
of two components: a vocabulary tree image classifier and a
landmark detector based on time-series pattern matching. We
use the vocabulary-tree method [2] to generate signatures for
images, which is a histogram of visual words from a pre-built
visual vocabulary. These signatures are later used to form
an image classifier for semantic place recognition. In order
to address the specific boundary issue (c.f . Fig. 4) faced
in semantic place recognition task, we propose to develop
a time-series pattern matching approach, called “Bag-of-
Landmarks using time series,” for detecting “landmarks”.

A. Vocabulary Tree

Bag-of-words modeling of images has been introduced by
Sivic and Zisserman [16]. Clustering methods are typically
employed for building the visual word dictionary. Several
clustering methods (e.g. k-means, vocabulary tree, etc.) have
been incorporated into an appearance-based localization sys-
tem [14]. In this section, we will demonstrate how a visual
word dictionary built with the vocabulary-tree method can
be used for semantic place recognition.

The vocabulary-tree method [2] is a hierarchical itera-
tive k-means clustering method with parent nodes being a
quantization representation of their children. Even though
the k-means clustering proved to be effective in various
applications, we find that the visual word extracted by the
vocabulary-tree method together with SIFT features is more
consistent under moderate change in lighting condition. This
is a crucial factor for robotics applications because the more
reproducible the word is, the better the place recognition will
be. Thus, we choose to use the vocabulary-tree method for
our bag-of-words model with SIFT features.

Given the signature of images, typical image categoriza-
tion methods will build up a nearest neighborhood (NN)
classifier from the image database, and then perform image
classification. When directly applying this method to seman-
tic place recognition, we face a boundary issue. In these
cases, the images collected at the “landmark” positions are
difficult for people to assign label for training. These “land-
marks”, as we mentioned before, are important landmarks
in topological mapping [17]. Hence, we propose a landmark
detection method based on time-series pattern matching, in
which each index of the time series is an image signature. If
a “landmark” is detected, we can preclude these images from
being used for semantic place recognition, hence improving
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the recognition rate. In order to do the time-series matching,
the distance between two signatures needs to be matched.
Instead of using the normalized difference measure [2],
we use a Gaussian histogram intersection kernel measure.
Define N as the number of leaves in the vocabulary-tree
(dictionary size). Given a query signature {sq : s1

q . . . sN
q }

and a database signature {sd : s1
d . . . sN

d }, the histogram
intersection kernel similarity sim(sq, sd) is described in
Eq. (1). Note that the similarity ranges from 0 to 1.

sim(sq, sd) =

N∑
k=1

(min(sk
q , sk

d))

N∑
k=1

sk
d

(1)

Next, we need to generate a distance measure based on
this similarity measure. Using images found in the database,
we find that the similarity measure for two images taken
within close proximity to one another can only peak around
0.2. This indicates that there cannot be a linear relationship
between the similarity and the distance. Through empirical
experience, we find that the Gaussian function e−kx2

in the
range of [0,1] is a fit for the data. Equation (2) shows the
distance diff(sq, sd) generated from the histogram intersec-
tion kernel. In practice, we used k = 40 for our experiments.
Figure 2 further illustrates the histogram intersection kernel
and the relationship between distance and similarity.

diff(sq, sd) = e−ksim(sq,sd)2 (2)

(a) (b)

Fig. 2. (a) Histogram intersection kernel (b) Relationship between
similarity and distance measure

B. Dynamic Time Warping

Dynamic time warping (DTW) is a well-known method
for matching time-series data. The advantage of using DTW
over other time-series matching algorithms is that the match-
ing between two time series can be of variable length.
This advantage is especially suitable for matching image
sequences collected by a robot because a robot usually can
vary its velocity, thus the number of images collected by
the robot over a specific range can be quite different. DTW
is also a suitable choice for other distance traveled based
schemes [14] since it handles the overlap of images well.
Meanwhile, by applying DTW, we assume that the robot
traverses through the “landmark” position in a fixed manner.
This is generally not a problem if the “landmark” is like a

Fig. 3. Iterative Vector Dynamic Time Warping. Adapted from Figure 5
of Chu et al. [18]

doorway connecting two places, where the only option for
the robot is to “go in” or “go out”.

The DTW algorithm is a dynamic programming algorithm
and is described in detail in [18] and [19]. Following Fig. 3,
each time series can react with an elastic behavior such that
each index of the query time series can find its best match
with the index of the reference time series. When matching
two time series [Lq : s1..sn] and [Ld : s1..sm], the cost of
matching si and sj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m is
described in Eq. (3).

DTW (si, sj) = diff(si, sj)+
min(DTW (si−1, sj), DTW (si, sj−1), DTW (si, sj))(3)

C. Bag-of-Landmarks using Time Series (BoLTS)

In order to apply the DTW algorithm to robot systems,
we need to solve the computational issue due to the nature
of image sequences collected by the robot. When a new
image comes from the visual sensor, the robot will need
to concatenate it with variable length of buffered historic
images as a query time series Lq. Then the set of vari-
able length query time series is used to match against the
“landmarks” of time series trained beforehand, because the
“landmarks” of time series in database can have different
length. The traditional DTW used here will bring about
significant amount of redundant computation. Thus, we save
the distance between buffered signatures after each DTW is
done in an global buffer. We refer to our modified version
of DTW as Iterative Vector Dynamic Time Warping (IV-
DTW). Using IV-DTW, whenever a new image is collected,
only one more distance needs to be calculated.

By using the vocabulary-tree method with our adapted
histogram intersection kernel and modified DTW algorithm,
the entire BoLTS for detecting “landmarks” can be described
using Algorithm 1. The IV-DTW algorithm is described in
Algorithm 2.
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Algorithm 1 : Bag-of-Landmarks detection using Time
Series
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki

is the length of the image sequence used for landmark i.
Initialize B = 80, minlen = 10
Initialize buffer D, d with size B ×B.
for t = 1 to T do

Collect new image It, generate signature st.
for j = minlen to B do

distj = IV-DTW([st−j ..st],{L1;..;Lm},D,d)
end for
store Distt = min

j
(distj)

end for
Output: The local minimums for Dist below some threshold will be
the detected landmarks.

Algorithm 2 : Iterative Vector Dynamic Time Warping (IV-
DTW)
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki

is the length of the image sequence used for landmark i. Query time
series (sequence of signatures): Lq = {s1 . . . skq}. Buffered distance
matrix: d and buffered cumulative distance D.
for i = 1 to m do

if d is empty then
d=[

⋃ki

k1=1

⋃kq

k2=1
diff(sk1 , sk2 )]

end if
Initialize Dc = [d, D]T

for every d(u, v) do
Dc(u, v) = d(u, v) + min(Dc(u + 1, v), Dc(u + 1, v +
1), Dc(u, v + 1))

end for
Compute disti between Lq and Li by backtracking from the top-right
cell of Dc

end for
Output: min

1≤i≤m
(disti).

D. Integration

As we have introduced the vocabulary-tree method and
the BoLTS method, we will put these two components
together to build our semantic place recognition system. The
procedure of our system is described in Algorithm 3.

Algorithm 3 : Robust Semantic Place Recognition
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki

is the length of the image sequence used for landmark i.
for t = 1 to T do

Collect new image, generate signature using vocabulary tree.
if BoLTS report landmark detection then

Mark the matched time series as landmark.
Don’t do semantic place recognition.

else
Do semantic place recognition

end if
end for

IV. EXPERIMENTAL WORK

We validated our semantic place recognition system on
the COsy Localization Database (COLD) [20]. The “bag-
of-words” and “siftpp” code written by Vedaldi [15] is
used for generating signatures using the vocabulary-tree
method. We evaluated the performance of our system using
the 10 image sequences collected on Path A within the
COLD-Freiburg set. First, we demonstrated that the places
for misclassification using the vocabulary-tree method are
located at “landmark” positions. Next, we use each image

Fig. 4. Misclassified places on the map.

TABLE I
COMPARISON OF CONFUSION MATRIX

(a) Confusion matrix with pruning; (b) Confusion matrix without pruning
(a)

P1 P2 P3 P4 P5

P1 0.9939 0 0.0061 0 0
P2 0.0103 0.9897 0 0 0
P3 0 0 1 0 0
P4 0 0 0 1 0
P5 0 0 0 0.0273 0.9727

(b)
P1 P2 P3 P4 P5

P1 0.9351 0.0227 0.0185 0.0237 0
P2 0.0163 0.9837 0 0 0
P3 0.0181 0 0.9819 0 0
P4 0 0 0 0.9655 0.0345
P5 0 0 0 0 1

sequence as the test set and the “landmarks” in the other 9
image sequences to form the “bag-of-landmarks”. The land-
mark detection rates of BoLTS for all 10 image sequences
are discussed. Finally, we compared our system (with and
without pruning using BoLTS) to existing methods [5], [6]
and demonstrated the robustness of our proposed method.

A. Importance of Landmarks

Inspired by Zivkovic et al. [7], our hypothesis is that
misclassification happens mostly at “landmark” positions. To
verify our hypothesis, we used seq1 cloudy1 as a training
set and tested the semantic place recognition using only the
vocabulary-tree method (VTM). There are 5 semantic places
on Path A, and we trained the vocabulary tree with 100 im-
ages per place. As shown in Fig. 4, the green marks indicated
the images that got misclassified. The obtained confusion
matrix for 5 places are compared in Table I. We can see
that pruning images at “landmark” positions improved the
recognition rate. Furthermore, we trained another vocabu-
lary tree using 3 sequences (seq1 sunny1, seq1 cloudy1,
seq1 night1), with 100 randomly sampled images per place.
Then we tested the semantic place recognition system on 7
other sequences. The ratio of misclassified images taken at
boundaries over all misclassified images is shown in Fig. 5.

B. Landmark Detection Performance

The COLD-Freiburg database [20] was used to test the
performance of landmark detection. In the database, there
were 10 sequences of images collected at different times
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Fig. 5. Misclassification ratio. Red bar represents the misclassified images
at boundaries.

under various lighting conditions. Leave-one-out cross-
validation was conducted on the 10 image sets to estimate
the accuracy of the detection algorithm in practice.

In the training image sets, 8 “landmarks” were trained
based on the bag-of-words generated with vocabulary tree.
Then, the test images were compared to the “landmarks”
using the proposed BoLTS. Figure 6 shows the distance
measure for different testing image sets. Each point on the
curve represents the minimum distance among distances to
the 8 “landmarks” and a sequence of 10 to 80 images ending
at that point. The local minima of the curve indicate the
ending time of the matching with different “landmarks”.
Assuming that every landmark is detected at least 60 frames
from each other and by sorting the distances of points at
different frames, the 8 “landmarks” with at least 60 frames
from each other could be found. ∗ The end of time series
(each matched landmark) is marked by a red segment in
Fig. 6.

For each “landmark” detected, the corresponding se-
quence of images was retrieved. The accuracy of landmark
detection was computed based on the sequence of images.
The false positive rates of landmark detection are shown in
Table II for all 10 image sequences. Since the ground truth
of sequences of images at different “landmarks” were not
available, the false positive rates were estimated manually by
checking every image in the detected sequence of images. If
the image is manually accepted as taken at a “landmark” po-
sition, it is treated as a landmark image. Detection results are
shown in Fig. 7. In Fig. 7, which shows one of the detection
results, the blue line represents the path of a moving robot,
and the red line segments indicate the detected “landmarks”.
All the “landmarks” in the seq1 cloudy3 sequence were
detected correctly.

C. Improved Semantic Place Recognition System

We compare our semantic place recognition system with
similar visual place classification experiments performed on

∗With a robot collecting images at 30 frames/sec, this means that the
robot cannot travel from one “landmark” to another “landmark” within 2
seconds, which is reasonable since a robot usually cannot go from one door
to another door within 2 seconds.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Extracted IV-DTW distance for example robot run, the red crosses
are identified “landmark” positions. The sequence from top-left to bottom-
right is (a) cloudy1, (b) cloudy3, (c) night2, (d) night3, (e) sunny1, (f)
sunny2. The local minimas show that “landmarks” are properly detected.

TABLE II
RECOGNITION RATES FOR LANDMARK DETECTION

Test TP% FP% TN% FN% Total No.
cloudy1 17.2 0 82.8 0 1459
cloudy2 14.0 1.0 84.3 0.7 1632
cloudy3 14.5 0 85.5 0 1672
night1 15.6 0.7 83.7 0 1911
night2 16.1 0.9 81.9 1.0 1582
night3 19.0 0.9 80.1 0 1703
sunny1 11.3 0.9 81.2 6.6 1598
sunny2 17.8 1.0 81.2 0 1514
sunny3 13.8 1.8 82.7 1.7 1451
sunny4 10.4 1.5 83.2 4.9 1777

Fig. 7. An example run of landmark detection on the floor plan tested
with seq1 cloudy3 image sequence.

the same COLD-Freiburg database. We name our methods
VTM (vocabulary-tree method) and VTBL(vocabulary tree
with bag-of-landmarks). Wang and Lin [6] used a Hull Cen-
sus Transform (HCT) method to generate features for each
omni-directional image and used this HCT feature together
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Fig. 8. Comparison of different semantic place recognition algorithms on
COLD-Freiburg database. VTM: vocabulary tree without pruning; VTBL:
vocabulary tree with bag-of-landmarks pruning; HCT: Hull Census Trans-
form; MM: Multi-model semantic place classification. The result used for
HCT is obtained from [6], where their best result for each weather is chosen.
The result used for MM is an averaged result of their classification rate on
all 3 sequences reported in their paper [5]. It is unknown which 3 sequences
of COLD-Freiburg did they use.

Fig. 9. Final run with our approach for seq1 cloudy3, which has 89%
recognition rate.

with SVM for semantic place recognition. Pronobis et al. [5]
reported the multi-model place classification performance on
the COLD-Freiburg database. Figure 8 shows that both of
our methods, VTM and VTBL, outperformed existing work.
An example run with a final label of the 5 semantic places
as well as detected “landmarks” is shown in Fig. 9. More
details can be found in the video attachment of this paper.

V. DISCUSSION AND FUTURE WORK

This paper proposed and developed a semantic place
recognition system with vocabulary tree and BoLTS. The
proposed system yielded significant improvement over ex-
isting methods for the semantic place recognition task. The
proposed landmark detection method (BoLTS) is a time-
series-based supervised learning approach, which is novel in
visual landmark detection context. However, the preparation
of training set of transition places may be very dependent on
robot trajectory. We will use of salient features other than
SIFT and incorporating probabilistic framework like [14]
into our landmark detection method to achieve a more robust

and general time-series landmark detector, thus requiring no
human assistance for marking image segments.
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